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Abstract 13 

Rats rely on communication between basolateral amygdala (BLA) and nucleus accumbens 14 

(NAc) to express lever directed approach in a Pavlovian lever autoshaping (PLA) task that 15 

distinguishes sign- and goal-tracking rats. While sign-tracking rats inflexibly respond to cues even 16 

after the associated outcome is devalued, goal-tracking rats flexibly suppress conditioned responding 17 

during outcome devaluation. Here, we sought to determine whether BLA-NAc communication in 18 

sign-trackers drives rigid appetitive approach that is insensitive to manipulations of outcome value. 19 

Using a contralateral chemogenetic inactivation design, we injected contralateral BLA and NAc core 20 

with inhibitory DREADD (hm4D-mcherry) or control (mcherry) constructs. To determine sign- and 21 

goal-tracking groups, we trained rats in five PLA sessions in which brief lever insertion predicts food 22 

pellet delivery. We sated rats on training pellets (devalued condition) or chow (valued condition) 23 

prior to systemic clozapine injections (0.1 mg/kg) to inactivate BLA and contralateral NAc during 24 

two outcome devaluation probe tests, in which we measured lever and foodcup approach. 25 

Contralateral BLA-NAc chemogenetic inactivation promoted flexible lever approach in sign-tracking 26 

rats, but disrupted flexible food-cup approach in goal-tracking rats. Consistent with a prior BLA-NAc 27 

disconnection lesion study, we find contralateral chemogenetic inactivation of BLA and NAc core 28 

reduces lever, but not foodcup approach in PLA. Together these findings suggest rigid appetitive 29 

associative encoding in BLA-NAc of sign-tracking rats hinders the expression of flexible behavior 30 

when outcome value changes.  31 

1 Introduction 32 

A body of evidence suggests that sign- and goal-tracking differences predict vulnerability to 33 

Substance Use Disorder (SUD) (Tomie et al., 2008; Flagel et al., 2009; Saunders & Robinson, 2010; 34 

Saunders et al., 2013; Kawa et al., 2016; Yager et al., 2015; Villaruel & Chaudhri, 2016). Reward 35 

predictive cues acquire appetitive motivational properties; a psychological process often referred to 36 

as incentive salience that is postulated to drive SUD vulnerability (Berridge, 1996; Robinson & 37 

Berridge, 1993; Berridge & Robinson, 2016). Sign-tracking (ST) and goal-tracking (GT) individual 38 
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differences during a Pavlovian lever autoshaping task capture the degree to which reward predictive 39 

cues acquire incentive salience (Flagel et al., 2009; Pitchers et al., 2015; Flagel & Robinson, 2017) 40 

and predict heightened drug-cue induced relapse despite negative consequences (Saunders & 41 

Robinson, 2010; Saunders et al., 2013). Prior to drug experience, ST rats inflexibly respond to cues 42 

after reward devaluation (Morrison et al., 2015; Nasser et al., 2015; Patitucci et al., 2016; Smedley & 43 

Smith, 2018; Keefer et al., 2020). A prior lesion study indicates that communication between the 44 

basolateral amygdala (BLA) and nucleus accumbens (NAc) is necessary for the acquisition and 45 

expression of lever approach that classifies ST rats (Chang et al., 2012). Here we aim to determine 46 

the extent to which the incentive salience process supported by BLA-NAc core communication 47 

interferes with the expression of flexibility in ST rats during outcome devaluation.  48 

BLA and NAc are critically involved in Pavlovian incentive learning processes including 49 

second order conditioning (SOC) and outcome devaluation. SOC is a learning process that relies 50 

upon the positive incentive value of the conditioned stimulus (CS), while outcome devaluation relies 51 

upon the current value of the unconditioned stimulus (US) (Holland & Rescorla, 1975). Pre-training 52 

lesions of either BLA or NAc impair both SOC and outcome devaluation, while post-training lesions 53 

of BLA disrupt only outcome devaluation, but not SOC (Hatfield et al., 1996; Setlow, Gallagher, et 54 

al., 2002; Johnson et al., 2009; Singh et al., 2010). Instead, the expression of SOC is mediated by 55 

NAc (McDannald et al., 2013). Pre-training, contralateral lesions disconnecting the BLA and NAc 56 

impair both SOC (Setlow, Holland, et al., 2002) and lever approach (the approach response 57 

characterizing ST rats), while leaving intact food cup-directed behavior (the approach response 58 

characterizing GT rats) (Chang et al., 2012). Taken together, the BLA and NAc support incentive 59 

learning relying on both conditioned stimulus (CS) value and current outcome (US) value. A growing 60 

number of studies demonstrate that GT, but not ST, rats flexibly reduce approach after outcome 61 

devaluation induced by satiety or illness (Morrison et al., 2015; Nasser et al., 2015; Patitucci et al., 62 

2016; Smedley & Smith, 2018; Rode et al., 2020; Keefer et al., 2020). Both ST and GT rats similarly 63 

acquire and express SOC (Nasser et al., 2015; Saddoris et al., 2016), suggesting sign- and goal-64 

trackers may utilize underlying BLA-NAc circuitry to differentially mediate incentive learning 65 

relying on CS or US value. Given tracking-related behavioral differences in incentive salience 66 

processing and flexibility, we hypothesize that the BLA to NAc communication drives rigid CS 67 

approach in ST rats and outcome value sensitive behavior in GT rats. 68 

The primary prediction of our hypothesis is that contralateral chemogenetic inactivation of 69 

BLA and NAc core will make ST rats more flexible in outcome devaluation. Specifically, in intact 70 

ST rats we expect similar levels of responding for valued and devalued conditions, consistent with 71 

our prior reports (Nasser et al., 2015, Keefer et al., 2020). However, with BLA-NAc inactivation we 72 

predict reduced lever-directed approach for devalued relative to valued conditions. We expressed 73 

inhibitory DREADDs in contralateral BLA and NAc core and use systemic injections of low-dose 74 

clozapine to inactivate these structures during outcome-specific satiety devaluation. Because of the 75 

unidirectional and predominately unilateral projections of BLA to NAc (Swanson & Cowan, 1975; 76 

Ottersen, 1980; Russchen & Price, 1984; Heimer et al., 1991; Brog et al., 1993; Kelley et al., 1993), 77 

contralateral inactivation of the these structures disrupts communication from BLA to NAc core, 78 

while leaving an intact BLA and NAc core to support behavior that relies on either of these structures 79 

alone. 80 

2 Materials and Methods 81 

2.1 Subjects and Apparatus 82 
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We maintained male and female Long-Evans rats (Charles River Laboratories, Wilmington, 83 

MA; 250-275 g at time of arrival) (N = 98) on a reverse 12 h light/dark cycle (lights off at 9:00 AM). 84 

We conducted all behavioral training and testing during the dark phase of the cycle. All rats had ad 85 

libitum access to water and standard laboratory chow before being individually housed after surgical 86 

procedures. After recovery, we food restricted rats and maintained them at ~90% of their baseline 87 

body weight throughout the experiment. We performed all experiments in accordance to the “Guide 88 

for the Care and Use of Laboratory Animals” (8th edition, 2011, US National Research Council) and 89 

were approved by the University of Maryland, School of Medicine Institutional Animal Care and Use 90 

Committee (IACUC).  91 

Prior to any training, we performed intracranial viral injection surgeries to deliver 92 

AAV8.hSyn.hM4Di.mCherry (hM4Di) or AAV8.hSyn.mCherry (mCherry) targeting the BLA and 93 

contralateral NAc core. We excluded some rats from subsequent analyses due to poor health or 94 

misplaced viral expression based on histological analysis (Figure 4), resulting in 72 rats being 95 

included in our analyses. The PCA characterization completed after surgery for viral injections 96 

resulted in the following number of rats in each group: ST n = 20 (mCherry n = 9 (n = 5 female, n = 4 97 

male), hM4Di n = 11 ( n = 7 female, n = 4 male), GT = 22 (mCherry n = 10 ( n = 4 female, n = 6 98 

male), hM4Di n = 12 ( n = 7 female, n = 5 male), and INT n  = 28 (mCherry n = 18 ( n = 10 female, n 99 

= 8 male), hM4Di n = 10 ( n = 3 female, n = 7 male). 100 

We conducted behavioral experiments in individual standard experimental chambers (25 x 27 x 101 

30 cm; Med Associates) located outside of the colony room. Each chamber was housed in an 102 

individual sound-attenuating cubicle with a ventilation fan. During PLA and devaluation probe tests, 103 

each chamber had one red house light (6 W) located at the top of the wall that was illuminated for the 104 

duration of each session. The opposite wall of the chamber had a recessed foodcup (with photo beam 105 

detectors) located 2 cm above the grid floor. The foodcup had an attached programmed pellet 106 

dispenser to deliver 45 mg food pellets (catalog#1811155; Test Diet Purified Rodent Tablet (5TUL); 107 

protein 20.6%, fat 12.7%, carbohydrate 66.7%). One retractable lever was positioned on either side 108 

of the foodcup, counterbalanced between subjects, 6 cm above the floor. Sessions began with the 109 

illumination of the red house light and lasted ~26 minutes. 110 

2.2 Surgical Procedures 111 

We rapidly anesthetized rats with 5% isoflurane and maintained them at 2-3% isoflurane 112 

(Vetone, Boisie, ID) throughout the procedure. We maintained body temperature with a heating pad 113 

during the procedure. Prior to the first incision, we administered a subcutaneous injection of the 114 

analgesic carprofen (5mg/kg) and subdermal injection of the local anesthetic lidocaine (10mg/ml at 115 

incision site). We secured rats in the stereotaxic apparatus (model 900, David Kopf Instruments, 116 

Tujunga, CA) and leveled the skull by equating lambda and bregma in the dorsal ventral plane. We 117 

lowered 10 μl Hamilton syringes (Hamilton, Reno, NV) into the brain targeting the BLA and 118 

contralateral NAc core (counterbalanced) using the following coordinates: BLA: (AP -3.0 mm, ML ± 119 

5.0 mm, DV -8.6 mm 0° from midline) NAc core: (AP +1.8 mm, ML ± 2.5 mm, DV -7.0 mm -6° 120 

from midline) relative to bregma skull surface (Paxinos & Watson, 2007). We delivered 121 

AAV8.hSyn.hM4Di.mCherry (hM4Di) or AAV8.hSyn.mCherry (mCherry) targeting the BLA and 122 

contralateral NAc core (Addgene, Watertown, MA) via a micropump (UltraMicroPump III, World 123 

Precision Instruments, Sarasota, FL) at a volume of 600 nL per site at a rate of 250 nL/minute. We 124 

left syringes in place for 10 minutes after the infusion ended to allow diffusion of the viral constructs 125 

prior to suturing incisions. After surgery, we placed the rats into a recovery cage on a heating pad 126 
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until ambulatory. We administered Carprofen (5 mg/kg; s.c.) 24 and 48 hours post-surgery and 127 

monitored weights daily to confirm recovery. 128 

2.3 Pavlovian Lever Autoshaping Training and Testing 129 

We trained rats over five daily Pavlovian lever autoshaping sessions (approximately 26 minutes 130 

duration per session), which consisted of 25 reinforced lever conditioned stimulus (CS+) 131 

presentations occurring on a VI 60 s schedule (50-70s). Trials consisted of the insertion of a 132 

retractable lever (left or right, counterbalanced) for 10 s, after which the lever was retracted and two 133 

45 mg food pellets were delivered to the foodcup, non-contingent on rat behavior. The sessions took 134 

place in darkness with a red house light that was illuminated for the duration of the session. 135 

After acquisition, we performed two days of satiety-induced outcome devaluation testing. Prior 136 

to test sessions, we gave rats free homecage access to 30g of rat chow (valued condition) or the same 137 

food pellets delivered during training (devalued condition) in a pre-habituated ceramic ramekin 138 

(similar to Parkes & Balleine, 2013). Immediately following satiation, we gave systemic injections of 139 

0.1 mg/kg clozapine i.p. (Tocris, Bristol, UK) dissolved in bacteriostatic saline prior to transport to 140 

the behavioral chambers (Gomez et al. 2017). We waited 30 min after injection to allow binding of 141 

the ligand to the DREADD receptors. Then we gave a PLA probe test (approximately 10 minutes 142 

duration) consisting of 10 non-reinforced lever presentations occurring on a VI60 s schedule (50-143 

70s). Immediately following testing, we gave rats a 30 min choice test in which they could consume 144 

up to 10g each of rat chow or pellets in the homecage. Between each PLA test we gave rats a single 145 

reinforced lever autoshaping training session to track stability in Pavlovian behavior. The next day, 146 

we gave rats a second round of satiety devaluation, PLA probe, and choice tests while sated under the 147 

opposite condition (pellet or chow; order counterbalanced). 148 

2.4 Measurements 149 

During PLA acquisition and probe tests, we collected three behavioral measurements during 150 

the 10 s CS (lever) period. All behavioral measurements were automatically collected and scored via 151 

MED-PC computer software (Med Associates, Georgia, VT). For foodcup and lever contacts, we 152 

recorded the total number of contacts and latency to first contact for all sessions. On trials in which 153 

no contact occurred, we recorded a latency value of 10s. We calculated the lever or foodcup 154 

probabilities by dividing the number of trials that a lever or foodcup contact was made by total 155 

number of trials in the session.  156 

The criterion used for behavioral characterization of sign- and goal- tracking phenotype was 157 

based on a Pavlovian Conditioned Approach (PCA) analysis (Meyer et al., 2012) determined by 158 

averaging PCA scores during training sessions four and five. The PCA score quantifies the variation 159 

between lever directed (sign-tracking) and foodcup directed (goal-tracking) behaviors. Each rat’s 160 

PCA score is the average of three difference score measures (each ranging from -1.0 to +1.0): (1) 161 

preference score, (2) latency score, and (3) probability score. The preference score is the number of 162 

lever presses during the CS, minus the foodcup pokes during the CS, divided by the sum of these two 163 

measures. The latency score is the average latency to make a foodcup poke during the CS, minus the 164 

latency to lever press during the CS, divided by the duration of the CS (10 s). The probability score is 165 

the probability to lever press, minus the probability to foodcup poke observed throughout the session. 166 

Sign-tracking PCA scores range from +0.33 to +1.0, goal-tracking PCA scores range from -0.33 to -167 

1.0, and intermediate group PCA scores range from -0.32 to +0.32. 168 

2.5 Histology 169 
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After completion of behavioral testing, we deeply anesthetized rats with isoflurane and 170 

transcardially perfused them with 100 ml of 0.1 M PBS followed by 400 ml 4% paraformaldehyde in 171 

0.1 M sodium phosphate, pH 7.4. We removed brains and post-fixed them in 4% paraformaldehyde 172 

for two hours before transfer to a 30% sucrose 4% paraformaldehyde solution in 0.1 M sodium 173 

phosphate for 48 hours at 4°C. We then rapidly froze them via dry ice and stored them at -20°C until 174 

sectioning. We collected 50 μm coronal sections through the entire extent of the nucleus accumbens 175 

and amygdala via a cryostat (Lecia Microsystems). We mounted sections on slides and verified viral 176 

expression in BLA and NAc core using anatomical boundaries defined by Paxinos and Watson 177 

(Paxinos & Watson, 2007) using a confocal microscope. The observer was blind to the condition and 178 

behavior of each animal. 179 

2.6 Experimental Design and Statistical Analysis 180 

Data was analyzed using SPSS statistical software (IBM v.25) with mixed-design repeated-181 

measures ANOVAs. Analyses included the within-subjects factors of Response (foodcup, lever) and 182 

Value (valued, devalued) and the between-subjects factors of Virus (mCherry, hM4Di), Tracking 183 

(ST, INT, GT), and Sex (female, male) as indicated in results section. Unplanned post-hoc tests used 184 

a Bonferroni correction. Training analyses include all tracking groups (ST, INT, GT). Devaluation 185 

analyses include ST and GT rats to test a priori hypotheses based on previously reported flexibility 186 

differences in these two tracking groups (Keefer et al., 2020; Nasser et al., 2015).   Due to the 187 

importance of using both males and females in research (McCarthy et al., 2017; Miller et al., 2017; 188 

Shansky, 2019), we explore the possibility of sex-differences by reporting sex effect sizes (Miller et 189 

al., 2017). Sex effect sizes are expressed as Cohen’s d (d = (M1 − M2) / SDpooled), where M1 is 190 

mean of group 1, M2 is mean of group 2, and SDpooled = √ (s12 + s22 ) / 2, which is the pooled 191 

standard deviation of the two groups (Cohen, 1988). This approach allows us to interpret potential 192 

sex effects that aren’t appropriately powered for typical statistical analysis. We follow general 193 

guidance for interpreting effect sizes where small effect d = 0.2, medium effect d = 0.5, and large 194 

effect d = 0.8 or larger (Cohen, 1988), and note instances that future studies should be powered to 195 

explore sex as a biological variable. 196 

3 Results 197 

3.1 Acquisition of Pavlovian Lever Autoshaping 198 

We trained rats for five days in Pavlovian Lever Autoshaping to determine tracking groups 199 

prior to outcome devaluation testing. We used a Pavlovian Conditioned Approach Index (Fig. 1A, 200 

see methods for calculation) that takes into account the number of lever and foodcup contacts (Fig. 201 

1B-C), latency to contact, and probability of contact for both lever and foodcup. We analyzed the 202 

lever autoshaping training data using six separate mixed-design, repeated measures ANOVAs with 203 

the between-subjects factor of Tracking (ST, INT, GT) with the within-subjects factors of Session (1-204 

5). In Table 1 we report main effects and interactions of these analyses. Notably, the critical Session 205 

× Tracking group interactions were significant for all six measures of conditioned responding 206 

(Fs>12.713, ps<0.001). We analyzed terminal levels of lever and foodcup contacts on Session 5, 207 

using between-subject factors of Virus (mcherry, hm4di) and Tracking (ST, INT, GT) and found no 208 

Virus main effects nor Virus x Tracking interactions (Fig. 1D) indicating that behavior did not differ 209 

between viral conditions prior to test for any of the six lever autoshaping measures (Fs<3.3, ps>0.05) 210 

. This was also the case when only ST and GT rats were included in the terminal contact analysis (all 211 

Fs<2.48, ps>0.05). 212 
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3.2 Effects of contralateral BLA-NAc core inactivation on Pavlovian approach during 213 

outcome devaluation 214 

We hypothesized that ST rats rely on BLA-NAc core to drive rigid appetitive approach. To test 215 

this a priori hypothesis, we examined the extent to which BLA-NAc core contralateral chemogenetic 216 

inactivation altered the preferred response ST rats during satiety devaluation tests. For ST rats the 217 

preferred response is lever contacts (Fig. 2A), while for GT rats the preferred response is foodcup 218 

contacts (Fig. 2B). Notably, mCherry ST control rats showed no difference in lever contact between 219 

valued and devalued tests, confirming their insensitivity to devaluation, consistent with prior reports 220 

(Keefer et al., 2020; Nasser et al., 2015). ST rats expressing hm4di showed greater lever contact 221 

during valued compared to devalued tests (t(10)=2.582, p=0.027), indicating devaluation sensitivity 222 

in ST rats with contralateral chemogenetic inactivation of BLA-NAc core (Fig. 2A). In contrast, 223 

mCherry GT control rats showed greater foodcup contact during valued compared to devalued tests 224 

(t(9)=2.273 p=0.049), confirming their devaluation sensitivity that is consistent with prior reports 225 

(Keefer et al., 2020; Nasser et al., 2015). GT rats expressing hm4di constructs showed no difference 226 

in foodcup contact during valued compared to devalued tests, indicating contralateral chemogenetic 227 

inactivation of BLA-NAc core makes GT rats insensitive to devaluation (Fig. 2B). We also 228 

conducted a repeated measures ANOVA on these preferred response data using between-subjects 229 

factors of Virus (mCherry, hM4Di) and Tracking (GT, ST), and the within-subject factor of Value 230 

(valued, devalued). We observed main effects of Virus (F(1,38)=5.485, p=0.025) and Tracking 231 

(F(1,38)=42.461,p<0.001), as well as Value x Tracking (F(1,38)=4.552, p=0.039) and Virus x 232 

Tracking (F(1,38)=4.460, p=0.041) interactions (see Fig. 2 A-B), indicating both virus and value 233 

manipulations differ by tracking group. For parallel analyses of non-preferred responding (lever 234 

contact for GT and foodcup contact for ST rats), we observed a main effect of Tracking such that GT 235 

performed more non-preferred approach behavior, F(1,38)=7.773, p=0.008), but no other main 236 

effects or interactions, ps>0.05 (see Fig. 2 C-D). 237 

A prior lesion study demonstrated that BLA-NAc communication drives lever directed, but not 238 

foodcup directed behavior in lever autoshaping (Chang et al., 2012). To evaluate whether we 239 

replicate this BLA-NAc lesion finding using our contralateral inactivation approach, we analyzed the 240 

data by including Response (lever, foodcup) as a factor. Consistent with the prior study, we observed 241 

a Response x Virus interaction (F(1,34)=4.484, p=0.042), shown in Fig. 2E-F, in which lever 242 

approach is affected more by contralateral BLA-NAc core inactivation than foodcup approach across 243 

both value conditions (Fig. 2E-F and Fig.2F inset). Because we included both males and females in 244 

this study, we next examined whether Sex interacted with any other factors during our devaluation 245 

tests. In addition to main effects for all factors (Value, Response, Virus, Sex, and Tracking, all 246 

F>4.983, p<0.05), we also observed a Response x Sex interaction, F(1,34)=4.688, p=0.037), which 247 

we explore by separately analyzing each response.  248 

We analyzed lever-directed behavior with between-subjects factors of Tracking (ST, GT), 249 

Virus (mCherry, hM4Di) and Sex (female, male), and within-subjects factor of Value (valued, 250 

devalued). Again, we observed a main effect of Sex (F(1,34)=5.549, p=0.024), driven primarily by 251 

more lever approach in females compared to males across virus groups and value conditions (Fig. 252 

3A). We also observed main effects of Value (F(1,34)=8.527,p=0.006) and Virus 253 

(F(1,34)=6.114,p=0.019). We next analyzed foodcup-directed behavior using the same factors We 254 

observed a Value x Tracking x Sex interaction (Fig. 3B; F(1,34)=5.02, p=0.032).  255 

Finally, we show lever and food cup contact data for male and female rats within each viral 256 

group in Fig. 3C-D. We provide effect size calculations for transparent reporting of data from both 257 
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sexes in our study of the effects of contralateral BLA-NAc core inactivation on lever and food cup 258 

approach in outcome devaluation. For lever-directed behavior, we observed a medium devaluation 259 

effect size only in hM4Di males (Cohen’s d = 0.71 valued vs. devalued), while small devaluation 260 

effect sizes were observed for male mCherry rats and females in both viral groups (Fig. 3C; Cohen’s 261 

d all < 0.33 valued vs. devalued). For foodcup behavior, we observed medium devaluation effect 262 

sizes only in males with BLA-NAc core intact (mCherry males Cohen’s d = 0.68 valued vs. 263 

devalued), while small devaluation effect sizes were observed for male hM4Di rats and females in 264 

both viral groups (Fig. 3D; Cohen’s ds all < 0.24 valued vs. devalued). These data suggest future 265 

studies designed to probe sex-specificity of BLA-NAc core manipulations may be warranted. 266 

3.3 Satiety and Devaluation Choice Test 267 

 We recorded pellet and chow consumption during satiety (pre-test) and choice test (post-test). 268 

Prior to devaluation test sessions, we found no difference in the amount of food consumed between 269 

tracking or viral groups during the satiation hour (F<1, p>0.4). To confirm the devaluation of the 270 

sated food, we gave rats a post-satiety choice test following the devaluation test. Rats preferred to 271 

consume food they were not sated on, as indicated by a main effect of Choice, F(1,40)=46.125, 272 

p<0.0001. There were no Virus or Tracking main effects (F<1.1, p>0.2) or interaction of these 273 

factors with Choice, (F<1.4, p>0.3) indicating that for both viral conditions, ST and GT have a 274 

similar preference for the non-sated food during choice test. 275 

Figure 4 shows a summary of histological verification and representative examples of viral 276 

expression in NAc core (Fig. 4A-B) and BLA (Fig. 4C-D) for hm4di and mCherry constructs. 277 

Contralateral injections were counterbalanced, thus for each rat only unilateral cell body expression 278 

was observed in contralateral BLA and NAc. Expression is shown in both hemispheres to represent 279 

both counterbalanced groups. 280 

4 Discussion 281 

We examined the effect of contralaterally inactivating BLA and NAc core on flexibility in 282 

outcome devaluation. We found BLA-NAc core inactivation promoted flexibility in otherwise 283 

inflexible sign-tracking rats, and disrupted flexibility in otherwise flexible goal-tracking rats. In viral 284 

control rats, we replicated previous findings that intact GT rats flexibility reduce approach behavior 285 

when the outcome is devalued, while ST rats do not (Keefer et al., 2020; Nasser et al., 2015). The 286 

tracking specificity of devaluation sensitivity has been observed across several studies, Pavlovian 287 

paradigms, and devaluation procedures (Nasser et al., 2015; Patitucci et al., 2016; Smedley & Smith, 288 

2018; Keefer et al., 2020), but see (Davey & Cleland, 1982; Derman et al., 2018; Amaya et al., 289 

2020). In our study using both males and females, BLA-NAc core contralateral chemogenetic 290 

inactivation specifically reduced lever directed behavior, but not food cup-directed behavior, 291 

consistent with a prior BLA-NAc crosslesion study showing greater attenuation of lever directed 292 

approach in male rats (Chang et al., 2012). While further studies are needed to probe sex differences 293 

on the role of BLA-NAc communication in driving devaluation sensitivity, from the present study we 294 

predict the tracking-specific effects of this manipulation are carried by male rats.  295 

A body of amygdala lesion and inactivation studies examining the neurobiology of incentive 296 

learning (for review see Wassum & Izquierdo, 2015) implicate candidate circuitry that may underlie 297 

differences in incentive learning that rely on the motivational properties of cues relative to the current 298 

value of the outcome. In brief, pre-training lesions of the BLA impair both the initial acquisition of 299 

incentive cue properties as well as subsequent updating of behavior in response to changing outcome 300 

values (Hatfield et al., 1996). Post-training lesions of the BLA similarly disrupt behavioral updating 301 
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during devaluation (Johnson et al., 2009). Additionally, BLA lesions disrupt acquisition of positive 302 

incentive value (Setlow, Gallagher, et al., 2002), while lesions of NAc prevent expression of 303 

incentive value (McDannald et al., 2013) in SOC, and this pathway is necessary to acquire and 304 

express learned motivational value (Setlow, Holland, et al., 2002). Disconnection of the BLA and 305 

NAc also produces deficits in both initial acquisition and terminal levels of lever directed behavior, 306 

the preferred response of sign-tracking rats (Chang et al., 2012). Thus, we predicted that if ST rats 307 

rely on BLA to NAc communication to form rigid, behaviorally inflexible incentive value 308 

representations, then inactivation of BLA and NAc core would facilitate behavioral flexibility in 309 

outcome devaluation. Consistent with our hypothesis, we observed that ST rats flexibly reduced lever 310 

directed behavior during outcome devaluation when BLA and contralateral NAc were inactivated. 311 

This suggests that ST rats rely upon these structures to support rigid appetitive approach expressed as 312 

lever directed behavior.  313 

Consistent with previous work, we observed that intact GT rats displayed behavioral flexibility, 314 

reducing their preferred responding following outcome devaluation, while intact ST rats did not 315 

(Morrison et al., 2015; Nasser et al., 2015; Keefer et al., 2020). However, we found GT rats with 316 

BLA-NAc chemogenic inactivation were insensitive to devaluation. This finding suggests that GT 317 

rats rely upon this circuitry to integrate and/or express learning about changes in reinforcer value.  In 318 

a PLA task designed to promote goal-tracking responses, NAc core is also necessary for the 319 

expression of goal-tracking (Blaiss & Janak, 2009). The present findings are also consistent with 320 

prior studies demonstrating that the BLA (Hatfield et al., 1996) and NAc (Singh et al., 2010) are 321 

critically involved Pavlovian outcome devaluation. Additionally, disconnection of the BLA and NAc 322 

produces a deficit in an instrumental outcome devaluation task (Shiflett & Balleine, 2010). The 323 

present study supports the role of this circuit in Pavlovian devaluation and suggests it may support 324 

different associative constructs in different individuals. That is, sign-trackers may rely on BLA and 325 

NAc to respond to cues based on their appetitive motivational properties, while goal-trackers rely on 326 

this circuitry to respond to cues based on the current value of the outcome. Consideration of tracking-327 

specific behavioral and neurobiological differences, as in the present study, may provide a useful 328 

framework for interpreting individual variability in circuit manipulation studies.  329 

The tracking-specific role of BLA and NAc core presented here falls into context with prior 330 

electrophysiological recording and optogenetic studies. Without BLA excitatory input, NAc fails to 331 

represent previously acquired CS-US associations, which blunts conditioned responding directed at 332 

both cues and outcomes (Ambroggi et al., 2008; Stuber et al., 2011). Compared to goal-trackers, 333 

sign-trackers show attenuated NAc reward signaling and stronger cue-evoked firing as training 334 

progresses (Gillis & Morrison, 2019). Similarly, NAc core cue-encoding during second order 335 

conditioning positively correlates with SOC performance (Saddoris & Carelli, 2014). Surprisingly, 336 

ST and GT rats similarly acquire and express SOC (Saddoris & Carelli, 2014; Nasser et al., 2015), 337 

which seems somewhat at odds with the perspective that SOC and ST reflect similar positive 338 

incentive learning processes, both of which rely on BLA-NAc communication. Notably, enhanced 339 

NAc core cue encoding is also associated with better devaluation performance and sensory 340 

preconditioning, two learning processes that reflect an inference about either the current value of the 341 

outcome or value-independent predicative stimulus relationships (Cerri et al., 2014; West & Carelli, 342 

2016). The double dissociation we observe in the present study, in which BLA-NAc core inactivation 343 

impedes flexibly in ST rats, but facilitates flexibility in GT rats, suggest individual or methodological 344 

differences that bias CS or US processing may account for the diverse role for BLA-NAc in inventive 345 

learning processes. 346 

4.1 Methodological Considerations 347 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted August 12, 2020. . https://doi.org/10.1101/2020.07.20.212738doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.20.212738
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
9 

Our inclusion of both male and female rats is consistent with current best practices in 348 

neuroscience research and is part of a larger, growing trend to improve representation of female 349 

subjects in basic science (McCarthy et al., 2017; Miller et al., 2017; Shansky, 2019). For practical 350 

reasons we included both males and females without fully powering sex as a factor in order to test 351 

our hypothesis about the contribution of BLA and NAc in driving tracking-specific differences in 352 

devaluation sensitivity. Consistent with previous work, we observed that females displayed more 353 

lever directed behavior than males overall (Madayag et al., 2017 but see Pitchers et al., 2015; 354 

Bacharach et al., 2018). Consistent with prior work showing that males are more sensitive to satiety-355 

induced outcome devaluation (Hammerslag & Gulley, 2014), we also see devaluation sensitivity of 356 

food cup approach is driven by male rats.  While the primary objective of this study was to include 357 

both sexes, not to probe sex differences, our exploratory analyses suggest that some sex effects may 358 

warrant further investigation. In particular, one testable working hypotheses includes the possibility 359 

that the devaluation sensitivity of lever approach that is unmasked by BLA-NAc core inactivation 360 

may be sex-specific. The present approach to include and report effects for both sexes ensures we do 361 

not rely solely on male rats to determine the causal role of brain circuit contributions to behavior.  362 

 The present work does not include the ipsilateral control group that is typical of traditional 363 

disconnection designs. In brief, our work employs contralateral chemogenetic inactivation of the 364 

BLA and NAc core. To demonstrate that effects are attributable to disrupted BLA-NAc core 365 

communication, rather than inactivation of these two regions alone, an ipsilateral control (in which 366 

communication between the structures is still possible unilaterally) is often employed. For practical 367 

reasons, we were unable to include an ipsilateral control group. However, we are not the first to 368 

contralaterally inactivate these regions, and a body of evidence demonstrates no effect of ipsilateral 369 

disconnection of the BLA and NAc in similar tasks. Contralateral disconnection of the BLA and NAc 370 

disrupts lever-directed approach in Pavlovian lever autoshaping both early and late in training. 371 

Critically, ipsilateral controls performed similarly to sham lesioned rats, suggesting unilateral 372 

functional communication between BLA and NAc is sufficient to support lever directed behavior 373 

(Chang et al., 2012). The present contralateral manipulations replicate the disconnection findings 374 

(Chang et al., 2012), bolstering our conjecture that BLA to NAc core communication is what drives 375 

our reported effects. Similarly, ipsilateral disconnection of the BLA and NAc produces no 376 

impairment in instrumental outcome devaluation or Pavlovian instrumental transfer (Shiflett & 377 

Balleine, 2010). Additionally, anatomical evidence establishes BLA to NAc connectivity being 378 

primarily unidirectional and unilateral (Swanson & Cowan, 1975; Ottersen, 1980; Russchen & Price, 379 

1984; Heimer et al., 1991; Brog et al., 1993; Kelley et al., 1993).  Indeed, excitatory input (either 380 

direct or via modulation of dopaminergic inputs) into the NAc originating from the BLA drives 381 

neuronal responses to reward-predictive cues (e.g. Floresco et al., 2001; Ambroggi et al., 2008; 382 

Simmons & Neil, 2009; Jones et al., 2010). While disconnection of the BLA and NAc reduces 383 

neuronal excitability within the NAc and decreases responding toward reward-predictive cues, 384 

ipsilateral controls show significantly less pronounced (Ambroggi et al., 2008; muscimol/baclofen 385 

inactivation of BLA and D1 antagonism in NAc) or absent changes in excitability and reward-386 

seeking behavior (Simmons & Neil, 2009; muscimol inactivation of BLA and D1/D2 antagonism in 387 

NAc). Altogether, while we expect the effects reported here reflect a disruption of communication 388 

from BLA to NAc, the ipsilateral control experiments would be necessary to confirm. We conclude 389 

that contralateral inactivation of BLA and NAc reveal opposite effects on devaluation sensitivity in 390 

sign- and goal-trackers. 391 

4.2 Conclusions 392 
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Pre-clinical studies evaluating behavioral and neurobiological markers of addiction-vulnerable 393 

individuals prior to any drug exposure are an important step toward understanding human addiction. 394 

Pre-clinical studies implicate BLA-NAc core communication in driving cocaine seeking (Di Ciano & 395 

Everitt, 2004), and NAc is heavily implicated in both sign-tracking and the enhanced cocaine relapse 396 

observed in ST rats (Flagel et al., 2011 ;Chang et al., 2012; Clark et al., 2013; Saunders et al., 2013; 397 

Fraser & Janak, 2017;). Sign-trackers show an array of behaviors indicative of maladaptive incentive 398 

learning, including resistance to extinction (Ahrens et al., 2016; Fitzpatrick et al., 2019), heightened 399 

tolerance for negative consequences (Saunders & Robinson, 2010), and heightened attraction and 400 

sensitivity to the reinforcing properties of predictive cues (Flagel et al., 2007; Robinson & Flagel, 401 

2009; Bacharach et al., 2018). While both ST and GT acquire the predictive relationship between cue 402 

and reward, ST are thought to attribute a higher level of incentive salience to the cue (Flagel et al., 403 

2009; Pitchers et al., 2015; Flagel & Robinson, 2017). Sign- trackers’ inflexibility prior to and after 404 

drug experience (Saunders et al., 2013; Keefer et al., 2020) highlights the utility of the sign-tracking 405 

model for understanding the brain basis of SUD vulnerability. This work has translational relevance, 406 

as humans also show variability in cue reactivity and devaluation sensitivity (e.g. Garofalo & di 407 

Pellegrino, 2015; Versace et al., 2016; De Tommaso et al., 2017; Pool et al., 2019). A deeper 408 

understanding of the psychological and neurobiological differences present prior to drug exposure 409 

can enhance potential therapeutic interventions (e.g. Saunders & Robinson, 2010, 2013; McClory & 410 

Spear, 2014; Versaggi et al., 2016; Pitchers et al., 2017; Valyear et al., 2017). This work also 411 

underscores the importance of considering tracking- and sex-specific effects in neurobiological 412 

examinations of outcome devaluation. Future studies should be adequately powered to consider sex 413 

as a variable, as the present work suggests that there are important sex differences in flexibility that 414 

are relevant to addiction vulnerability. 415 
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11 Tables 673 

 674 

Table 1 | Repeated Measures ANOVA for Pavlovian lever autoshaping across all tracking groups 675 

    Lever 

Effect 
Degrees of Freedom Contact Latency Probability 

 F p F p F p 

Session (4,268) 59.805 <.001 71.348 <.001 72.357 <.001 

Tracking (2,67) 43.386 <.001 36.199 <.001 49.196 <.001 

Session * Tracking (8,268) 15.106 <.001 12.713 <.001 15.085 <.001 

    Foodcup 

Effect 
Degrees of Freedom Contact Latency Probability 

 F p F p F p 

Session (4,268) 20.647 <.001 36.887 <.001 29.325 <.001 

Tracking (2,67) 14.434 <.001 27.219 <.001 24.841 <.001 

Session * Tracking (8,268) 25.267 <.001 31.322 <.001 28.135 <.001 

 676 

12 Figure Captions 677 
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Figure 1. Pavlovian Lever Autoshaping acquisition data. Data represents (A) average PCA score, (B) 678 

lever contacts, (C) foodcup contacts during training; and (D) both terminal lever and foodcup 679 

contacts on fifth training session are represented as a function of viral condition.  680 

Figure 2. Outcome devaluation in sign- and goal-tracking rats. Data represents individual subjects 681 

(line) and group averaged (bars) for (A-B) preferred responding (ST: lever contact, GT: foodcup 682 

contact) and (C-D) non-preferred responding (ST: foodcup contact, GT: lever contact), + SEM. A 683 

priori planned comparisons reveal that (A) hM4Di, but not mCherry, ST show devaluation effect 684 

(difference between valued and devalued) for lever directed behavior, t(10)=2.582, p<0.05. (B) 685 

mCherry, but not hM4Di, GT show devaluation effect for foodcup directed behavior, t(9)=2.273 686 

p<0.05. No differences were found for non-preferred responding. Data for (E-F) represents individual 687 

subjects (dot) and group averages (bars) for (E) lever and (F) foodcup contacts during outcome 688 

devaluation; (F inset) BLA-NAc core inactivation disrupts lever but not foodcup approach. 689 

Figure 3. Sex effects during outcome devaluation; split by response type (A-B) and virus group (C-690 

D). Data represents individual subjects (dot) and/or group averages (bars) + SEM. (A) Females 691 

preform more lever-directed responses than males during outcome devaluation tests overall. (B) 692 

Tracking x value x Sex interaction of foodcup responding. (C) Male hM4Di rats show moderate 693 

devaluation effect sizes for lever approach, Cohen’s d=0.71, whereas (D) intact mCherry males show 694 

moderate devaluation effect sizes for foodcup approach, Cohen’s d=0.69.  695 

Figure 4. Histological verification of viral expression in NAc core and BLA. Rats were injected with 696 

viral constructs unilaterally in BLA and in contralateral NAc core (mm from bregma; (Paxinos & 697 

Watson, 2007); scale bars represent 500 μm. Unilateral expression was counterbalanced, but 698 

expression is shown in both hemispheres. (A) Schematic representation of viral expression and (B) 699 

representative image of mCherry (top) and hM4Di (bottom) NAc core expression. (C) Schematic 700 

representation of viral expression and (B) representative image of (top) mCherry and hM4Di 701 

(bottom) BLA expression. Legend indicates density of overlapping expression, where (n) is the 702 

number of overlapping cases to produce the represented opacity. 703 

 704 
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